
-------------------- DOUBLETALK DEVELOPER'S TOOLS --------------------

Copyright (C) 1992-1996 RC Systems, Inc.
All rights reserved.

TABLE OF CONTENTS

INTRODUCTION ... 1

OVERVIEW ... 1

DISK CONTENTS .. 2

PRINTER EMULATOR ... 2
Installing DTPRN ... 2
Disabling DoubleTalk's Buffer 3
Removing DTPRN From Memory 3
Checking For DTPRN's Presence 3
Sending Text and Commands 4
Stopping Speech Production 5

BASIC LIBRARY .. 5

C LIBRARY .. 6

DATA FILE FORMATS .. 6
LPC File Format .. 7
PCM File Format .. 7

Sound conversion utility 8
Silence threshold 9
Creating library files 9

TGN File Format .. 9

ASSEMBLY LANGUAGE API ... 10
Function Calls .. 10

HARDWARE I/O .. 13
DoubleTalk PC ... 13

I/O ports ... 13
LPC port .. 13
TTS port .. 14

DoubleTalk LT ... 16
Reading the LT's SYNC flag 16
Protocol Options command 17

Detecting DoubleTalk .. 18
Indexing .. 19

DoubleTalk PC ... 19
DoubleTalk LT ... 19
Not all DoubleTalks support indexing! 20

Interrogating DoubleTalk 20

i

MUSICAL TONE GENERATOR .. 21
Initialize Command .. 21

Initialize command format 22
Voice Frame ... 22

Voice frame format .. 22
Choosing note durations and tempo 23

Play Command .. 24
Quit Command .. 24
Example Tune .. 24

SINUSOIDAL TONE GENERATOR ... 25

EXCEPTION DICTIONARIES .. 27
Exception Syntax .. 27
The Translation Algorithm 29
Rule precedence ... 29
Text not matched by the dictionary 30
Effect on punctuation ... 31
Character mode exceptions 31
Applications .. 31

Correcting mispronounced words 31
No cussing, please! 32
When 0 is not zero .. 32
Arithmetic operators 32
Acronyms and abbreviations 32
Heteronyms .. 33
Foreign languages ... 33
Language translation 33

Tips .. 34
Exception anomalies 34

EXCEPTION COMPILER .. 34
File Types .. 35
Compiling From the Command Line 37
Downloading Compiled Dictionaries 37

PCM MODE .. 37
Buffered PCM Mode ... 37
Non-Buffered PCM Mode ... 38

TTS SYNTHESIZER PROGRAMMING TIPS 39
Response Time Considerations 39
Creating Pauses in Speech 40
Forcing Character Pronunciation 40
Supporting User Dictionaries 41

APPENDIX A .. 42
LPC Speech Encoding Services 42

APPENDIX B .. 43
Additional Information .. 43

ii

INTRODUCTION ---

This disk comprises the Developer's Tools for the DoubleTalk PC and
DoubleTalk LT voice synthesizers.

The information presented here, along with the accompanying support
files, are intended to augment the DoubleTalk PC/LT User's Manual
that comes with DoubleTalk - not as a replacement for it. For
example, the command set for controlling the text-to-speech
synthesizer is presented in the User's Manual, and hence is not
duplicated here.

If you cannot find the answer to a nagging problem or question you
have about DoubleTalk, please give our tech support people a call.
They'd be happy to help you solve your unsolved mysteries.

OVERVIEW ---

DoubleTalk PC is an internal voice synthesizer for the IBM PC/XT/AT,
PS2/25/30 and compatible computers, while DoubleTalk LT is an
external, serial-driven version which can be used with virtually any
platform. Both contain four voice synthesizers, enabling them to
support virtually all of the common voice technologies in use today.

The text-to-speech (TTS) synthesizer is capable of producing
unlimited, medium quality speech from plain English or Spanish ASCII
text. The linear predictive coding (LPC) synthesizer is compatible
with Texas Instruments' TSP5220 voice chip and most LPC data
recorded for other LPC synthesizers. It features extremely low data
rates for digitized speech - only 200 bytes per second (40:1
compression). The PCM/ADPCM and CVSD synthesizers enable DoubleTalk
to play back digitized speech and sounds with very high sound
quality. DoubleTalk also includes programmable tone generators
(TGN), which can be used to produce audible prompts, music,
signaling tones, or even dial a telephone, from your programs.

DoubleTalk is software compatible with RC Systems' V8600 and V8601
OEM voice boards, which share DoubleTalk's software command set.
Programs written for one synthesizer will work with the other
(except for LPC and CVSD-based speech, which the V860X synthesizers
do not support).

Unlike most synthesizers on the market, DoubleTalk does not require
any of the host computer's resources to operate (e.g., memory, IRQ's
or CPU time). A built in 10 MHz 16-bit processor, 512K ROM and 8K
RAM comprise a complete, self-contained text-to-speech conversion
system. An application program need only write the ASCII text to be
spoken to DoubleTalk, just as if it were a printer. Built in
exception dictionary support allows the pronunciation of any word or
character to be changed by the programmer or end-user. The rich
command set allows the voice output to be tailored to suit any
user's taste.

All DoubleTalks contain a unique, program-readable "silicon serial
number." This enables a program to lock itself to a specific

RC SYSTEMS - 1 - DOUBLETALK TOOLS

DoubleTalk, providing a very secure form of software copy
protection. A user can make as many copies of the program as he
wishes, but each will still run on only one computer.

DISK CONTENTS --

This disk contains the following programs and files:

TOOLS.DOC - This file
DTPRN.COM - Text-to-speech printer emulator
INT4DAPI.COM - IBM Speech Adapter BIOS emulator
COMPILE.COM - Exception rule compiler
DTQB.LIB - Basic/DoubleTalk support library (QB 4.5)
DTQBX.LIB - Basic/DoubleTalk support library (PDS 7.x)
DTC.LIB - C/DoubleTalk support library
DTDECLAR.BI - Function/sub declaration file for DTQB(X).LIB
DTC.H - Function prototypes for DTC.LIB
DTQB_EX.BAS - Basic/DoubleTalk library demo program
DTC_EX.C - C/DoubleTalk library demo program
LOADER.BAS - Example Basic exception dictionary loader
TXTPHM.BAS - Basic program referred to in DTQB_EX.BAS and DTC_EX.C
DT_INTGT.ASM - Assembly language interrogation routine (MASM)
DT_LPC.ASM - Example assembly language LPC driver (MASM)
DT_PCM.ASM - Example assembly language PCM driver (MASM)
DT_TTS.ASM - Example assembly language TTS driver (MASM)
DT_XLT.ASM - Assembly language phoneme translator (MASM)
WORDS2.LPC - LPC data file used in DTQB_EX.BAS and DTC_EX.C
PORTAL.PCM - ADPCM data file used in DTQB_EX.BAS and DTC_EX.C
GROOVY.TGN - TGN data file used in DTQB_EX.BAS and DTC_EX.C
SPANISH.EXC - Source for SPANISH.EXS (included on Utilities disk)

PRINTER EMULATOR ---

If you will only be using DoubleTalk's text-to-speech capabilities
(and possibly the DTMF generator) in your application, the printer
emulator driver, DTPRN.COM, is the easiest way to go. DTPRN is a
small TSR program that enables DoubleTalk's TTS synthesizer to
emulate any one of the computer's printer ports (LPT1-3) or
communication ports (COM1-4). This enables most DOS and Windows 3.1
applications and programming languages to communicate with
DoubleTalk by simply "printing" the text to be spoken to a printer
port. DTPRN requires less than 1K of memory, and can be loaded into
upper memory on machines supporting this feature using the DOS
LOADHIGH command.

Installing DTPRN

DTPRN is invoked from the DOS command line by typing the command

DTPRN <port> [/N] [/Cx] [/R]

where <port> is one of the seven system ports listed above. For
example, DTPRN can be installed as LPT2 by typing

RC SYSTEMS - 2 - DOUBLETALK TOOLS

DTPRN LPT2 (or LPT2:)

If no port specification is given, DTPRN will install itself as
LPT3. During installation, DTPRN will locate and initialize
DoubleTalk; if DoubleTalk cannot be located in the computer or on a
serial port, DTPRN will abort the installation process and notify
the user. Note that DTPRN (as well as all other software drivers
supplied on the Utilities and Developer's Tools disks) looks for
DoubleTalk LT first, before scanning the internal slots for
DoubleTalk PC. This scheme enables an application program to work
with the internal DoubleTalk PC when an LT is also present, by
simply turning the LT's power off.

If an error occurs during the installation of DTPRN, such as the use
of an invalid port name or DTPRN is already resident, an error code
is returned in the AL register. This code can be processed in a
batch program using the IF ERRORLEVEL command, so appropriate action
can be taken. The following is a summary of the return codes
returned by DTPRN:

0 DTPRN was successfully installed (no errors).
1 DTPRN is already resident.
2 An invalid port name was specified.
3 Too many or invalid parameter(s) (DTPRN still loads).
4 Incompatible version of DOS (must be 2.0 or later).
5 DoubleTalk could not be located.

During operation, DTPRN intercepts the appropriate BIOS software
interrupt vector (14h for COM ports or 17h for LPT ports). Programs
that bypass the BIOS hooks by accessing the port's hardware directly
(as some terminal programs do) will not speak, since DoubleTalk will
never receive the output characters.

Disabling DoubleTalk's Buffer

The optional command line switch /N is used to disable DoubleTalk's
text buffer. This can be beneficial in applications where it is
important that the voice stay synchronized with the text being read
from the screen. (Note: If your application sends an exception
dictionary to DoubleTalk via DTPRN, the buffer *must* be enabled
while the dictionary is being output to DoubleTalk.)

Removing DTPRN From Memory

DTPRN can be removed from memory and the interrupt vector (discussed
below) restored to its previous state by typing

DTPRN /R

Checking For DTPRN's Presence

An application program can check for the presence of DTPRN by
examining the interrupt vectors. The word at 0:52h (int 14h) or
0:5Eh (int 17h) specifies the segment where DTPRN is located.

RC SYSTEMS - 3 - DOUBLETALK TOOLS

Address seg:103h contains the string "DTPRN Copyright (C) 1990 RC
Systems, Inc." if DTPRN was installed successfully. The installed
port name ("LPT1," "COM3," etc.) can be determined by examining the
first four bytes at address seg:12Ch.

During initialization, DTPRN stores the I/O address of DoubleTalk's
TTS synthesizer (normally 29Fh for DoubleTalk PC, or the base
address of the COM port DoubleTalk LT is connected to) in the BIOS
data area. This can be useful if your program needs to read or write
to DoubleTalk directly, such as to determine if DoubleTalk is
currently speaking (see the SYNC and SYNC2 flag descriptions in the
"Hardware I/O" section, below). Exactly where the I/O address is
stored in the BIOS data area depends on which port DTPRN is
emulating, as the following table illustrates:

Port DTPRN Mem. address
installed as (abs. hex)

COM1 400
COM2 402
COM3 404
COM4 406
LPT1 408
LPT2 40A
LPT3 40C

For example, if DTPRN was installed as LPT1, location 40:8h will
contain DoubleTalk's TTS I/O address (29Fh for DoubleTalk PC, if the
jumper block hasn't been moved from the factory setting, or 3F8h for
an LT connected to COM1). In the case of the internal PC card, an IN
instruction (or its high-level language equivalent) to this address
will return the TTS synthesizer's status flags. Likewise, text and
commands can be output to either synthesizer with an OUT instruction
or its equivalent.

Sending Text and Commands

Any combination of text and commands can be sent to DoubleTalk via
DTPRN. Remember that DoubleTalk will not actually begin speaking
until it receives at least one carriage return (0Dh) or null (00h),
except when in Character mode. Only the text up to that point will
be spoken.

A special feature of DTPRN is the way in which it handles DoubleTalk
commands. DoubleTalk itself accepts only a control character (^A by
default) for commands, which can be somewhat difficult, if not
impossible, for a user to enter in some printing applications, such
as a word processor. For this reason, DTPRN has been written to also
accept an asterisk (*) as the command character, besides the
standard ^A character. A so-called "asterisk command" must be
followed by an alphanumeric character, '+', '-', or '@' to be
considered a valid command by DTPRN. Examples of valid asterisk
commands are:

*8s *3F *+10P

RC SYSTEMS - 4 - DOUBLETALK TOOLS

If the text being read contains asterisk characters, you may find
DoubleTalk's voice changing unexpectedly, if the characters
following an asterisk evaluate to a valid command. For this reason,
DTPRN allows you to change its command character to any other
printing character, with the optional /Cx command line switch. For
example, /C& changes the command character from '*' to '&'. To
disable DTPRN's command recognition altogether, use /C by itself.
For example,

DTPRN LPT1 /N /C

installs DTPRN as LPT1, with the buffer and command recognition both
disabled. Note that even when DTPRN's command character has been
changed (or disabled), commands can still be issued to DoubleTalk
using DoubleTalk's command character (^A).

Stopping Speech Production

Some application programs, such as screen readers for the blind, may
require that the speech be stopped before everything in the input
buffer has been spoken. This can be done quite easily by simply
writing a ^X (18h) to DoubleTalk's TTS port, which immediately
causes speech production to stop and the entire input buffer to be
cleared. The synthesizer can also be stopped by using the
appropriate BIOS Initialize function call (AH = 0 for int 14h or AH
= 1 for int 17h). The user may also stop the speech by pressing both
left and right Shift keys simultaneously.

DoubleTalk's current settings are *not* be affected by any of the
above methods. (Note: It is recommended that the ^X character be
output to DoubleTalk's TTS port directly using an OUT instruction,
without performing handshaking of any kind. This allows the speech
to be stopped even if the input buffer is full.)

BASIC LIBRARY --

The Basic library routines supplied on this disk provide support for
using DoubleTalk with Microsoft QuickBASIC and Professional Basic
7.x. In fact, the SmartTalk demo program, supplied on the Utilities
disk, was written in QuickBASIC 4.5 and linked with this library.
Fully documented Basic source code demonstrating each library
function is included in the file DTQB_EX.BAS.

The routines included in the Basic (and C) libraries were written to
be as granular as possible. This means that a Basic program using,
for example, only the DTINIT and SAY functions will pull in only the
modules associated with initializing DoubleTalk and using the TTS
synthesizer from the library during linking. Unneeded modules, such
as those associated with LPC and PCM support, will not be included
in the final executable file, saving both disk space and memory.

Two functionally-identical versions of the Basic library are
included: DTQB.LIB for use with QB 4.5, and DTQBX.LIB for Basic PDS
7.x (the only difference in the two libraries deals with far string

RC SYSTEMS - 5 - DOUBLETALK TOOLS

support). The following is a list of the functions provided in these
libraries:

DTINIT - Locates and initializes DoubleTalk
ROMVER$ - Returns DoubleTalk's ROM version number
SERNUM - Returns DoubleTalk's serial number
DTSTS - Returns the status of the TTS and LPC synthesizers
INTGT - Returns the current settings of the TTS synthesizer
SAY - Speaks a text string through the TTS synthesizer
XLT$ - Converts a text string to a phoneme string
TTSBUFON - Enables the TTS synthesizer's input buffer
TTSBUFOFF - Disables the TTS synthesizer's input buffer
LPC - Speaks one or more words from an LPC data file
LPCBUFON - Enables the LPC synthesizer's input buffer
LPCBUFOFF - Disables the LPC synthesizer's input buffer
LPCSPD - Controls the LPC synthesizer's output speed
LPCRPT - Repeats the last LPC word or phrase
PCM - Plays one or more sounds from a PCM/ADPCM data file
PCMRATE - Controls the PCM playback speed
TONES - Plays back a TGN data file (proprietary format)
TONES1 - Plays back a TGN data file (standard format)

C LIBRARY --

The C function library provides a set of C functions similar to the
Basic library. Fully documented C source code demonstrating each
function's use is included in the file DTC_EX.C. The following is a
list of the functions provided in the DTC.LIB library:

DT_Init - Locates and initializes DoubleTalk
DT_RomVer - Returns DoubleTalk's ROM version number
DT_SerNum - Returns DoubleTalk's serial number
DT_Sts - Returns the status of the TTS and LPC synthesizers
DT_Intgt - Returns the current settings of the TTS synthesizer
DT_Say - Speaks a text string through the TTS synthesizer
DT_Xlt - Converts a text string to a phoneme string
DT_Lpc - Speaks one or more words from an LPC data file
DT_LpcRpt - Repeats the last LPC word or phrase
DT_Pcm - Plays one or more sounds from a PCM/ADPCM data file
DT_Tgn - Plays back a TGN data file (proprietary format)
DT_Tgn1 - Plays back a TGN data file (standard format)

DATA FILE FORMATS --

The LPC, PCM and TGN functions in the Basic and C libraries utilize
a common file format for their data files. If you intend to use your
own data files with either library, you must be sure to adhere to
these formats. Note that the SmartTalk program (included on the
Utilities disk) utilizes the same formats, and may be used for
testing your data files.

RC SYSTEMS - 6 - DOUBLETALK TOOLS

LPC File Format

The first word (two bytes) of an LPC data file indicates how many
entries (words and/or phrases) are contained within the file, and
information about the LPC data format. The lower 14 bits (0-13)
contain the number of entries; therefore, up to 16,383 words and
phrases can be stored in a single LPC data file. Bit 15 (FMT)
indicates the type of LPC data stored in the file, where 0 = 5220
format, and 1 = D6 format. Bit 14 is reserved, and should be cleared
to 0.

Bit # 7 6 5 4 3 2 1 0
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ N U M B E R O F E N T R I E S ³ byte 0
À------Á------Á------Á------Á------Á------Á------Á------Ù

15 14 13 12 11 10 9 8
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ FMT ³ 0 ³ N U M B E R O F E N T R I E S ³ byte 1
À------Á------Á------Á------Á------Á------Á------Á------Ù

Figure 1. LPC Data File Header

Following the header word is the actual LPC data, in a length/data
format, as shown below. This format was chosen because it is very
easy to append new entries to the file (a table of pointers doesn't
have to be maintained, as with other formats), and each entry may be
up to 64K bytes in length.

bytes 0-1: file header
bytes 2-3: length of first entry

. first entry's data

. .

. .

. length of entry n

. entry n's data

The *.LPC files supplied on the Utilities and Developer's Tools
disks use this format, and can be examined using DEBUG.

PCM File Format

The PCM data file format is similar to the LPC file format. The
"number of entries" variable is eight bits in length, instead of 14.
This limits the number of sounds that can be contained within a PCM
data file to 255, but considering the inherent size of PCM sounds,
this is actually quite a large number. The length variable for each
entry is three bytes instead of two, allowing individual sound
entries to be up to 16MB in length.

RC SYSTEMS - 7 - DOUBLETALK TOOLS

Bit # 7 6 5 4 3 2 1 0
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ N U M B E R O F E N T R I E S ³ byte 0
À------Á------Á------Á------Á------Á------Á------Á------Ù

15 14 13 12 11 10 9 8
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ FMT ³ S A M P L I N G R A T E ³ byte 1
À------Á------Á------Á------Á------Á------Á------Á------Ù

Figure 2. PCM Data File Header

The second byte of a PCM data file contains two types of information
about the file: the rate at which the data was originally sampled,
and the PCM data type. The low-order seven bits contain a number
between 0 and 99 decimal, corresponding to the sampling rate
variable in the PCM Mode command (see "PCM Mode" section, below).
Note that the value stored here does not affect the actual playback
rate in the libraries; it is for informational use only (the library
PCM functions explicitly set the playback rate).

The high-order bit (FMT) should be 0 if the file contains linear PCM
data, otherwise it should be set to 1 for ADPCM (compressed) data.
This flag is very important, as it is responsible for invoking the
correct decoding algorithm in the libraries. The PCM file format is
summarized below.

bytes 0-1: file header
bytes 2-4: length of first entry

. first entry's data

. .

. .

. length of entry n

. entry n's data

The *.PCM files supplied on the Utilities and Developer's Tools
disks use this format, and can be examined using DEBUG.

Sound conversion utility

CONVERT.COM is a DOS-based utility program used for converting
eight-bit VOC (Soundblaster) and WAV (Windows) sound files to the
PCM format used in the DoubleTalk libraries. Integrated into the
program are ADPCM compression algorithms, used for reducing the
storage requirements of sound files by a factor of two or more. The
output of the utility is a file containing the converted PCM/ADPCM
data, accompanied by a three-byte data length header (the format
used by the Basic and C libraries).

The utility is run by typing the following on the DOS command line:

CONVERT <filename> [/C [/Sn]]

RC SYSTEMS - 8 - DOUBLETALK TOOLS

where <filename> is the name of the file to be converted. If the
extension is omitted from the file name, "wav" is assumed by
default. The optional C switch is used to invoke the ADPCM
compression algorithms (otherwise, the output file will be linear
PCM). Sn is an optional silence-encoding threshold parameter used in
conjunction with the C switch, where n can be any value between 0
and 9 (default = 2).

By default, the output from the utility is a file which has the same
name as the input file, but with the extension "pcm."

Silence threshold

The silence threshold parameter, Sn, sets the maximum level that is
to be considered silence by the ADPCM encoding algorithms. The
larger n is made, the higher the compression ratio will be. However,
excessively high values of n can cause the decoded ADPCM output to
become somewhat "grainy" sounding. The point at which this becomes
objectionable depends on many factors, such as desired output
quality vs. storage requirements, recording level, background noise,
sound source, etc. Experimentation with this parameter is the best
way to find the optimum setting. (Note that you may use a different
silence threshold value for different sound files; the decoding
algorithm can dynamically adapt to changing thresholds.) A silence
threshold of 2 will be used if the threshold is not specified.

Creating library files

Multiple PCM sound files can be concatenated together for use with
the Basic and C libraries with the DOS COPY command. For example, to
combine the files file1, file2, and file3 into a single file file4,
type

COPY /b hdr+file1+file2+file3 file4

The hdr file is a two-byte header "template," supplied on this disk,
used for reserving room in the target file for the header required
by the libraries.

TGN File Format

There are actually two TGN file formats, the simplest of which will
be discussed here. This format is supported by the Basic library
TONES1 and C library DT_Tgn1 functions. The more complex,
proprietary format is supported by the TONES and DT_Tgn functions,
and is used primarily for playing full-length songs. SmartTalk does
not use or support the use of the simpler format discussed here.

The first two bytes of a TGN file indicate how many Voice frames
(*not* bytes) are contained within the file (see "Musical Tone
Generator," below, for a discussion of tone generator Voice frames).
This value must be an integer between 0 and 16,383. The actual Voice
frame data immediately follows these two bytes. A TGN data file
contains no amplitude or tempo information; these values are passed
by the calling program to the TGN functions as parameters.

RC SYSTEMS - 9 - DOUBLETALK TOOLS

As an example, suppose a short tune consisted of 12 voice frames.
The first word in the TGN file would be set to a value of 12
(because there are 12 Voice frames), followed by 48 bytes (12 frames
x 4 bytes/frame) of data. The GROOVY.TGN file supplied on this disk
uses this format, and can be examined using DEBUG.

ASSEMBLY LANGUAGE API --

The INT4DAPI.COM program provides a set of DoubleTalk function
calls, similar to DOS' int 21h service calls. It also emulates the
BIOS int 4Dh driver built into the IBM Speech Adapter. This
implementation is actually a subset/superset of the Speech
Adapter's, since DoubleTalk does not support CVSD recording (only
playback). It does, however, support the foreground and background
LPC playback and CVSD playback (32 kbps) functions, as well as some
new functions including PCM/ADPCM playback. The driver was
originally written so that programs utilizing these voice
technologies could work with DoubleTalk, but you may also find it
useful for your own programming. INT4DAPI can be run in high memory
using the DOS LOADHIGH command.

The methods for detecting the presence of INT4DAPI, detecting
installation errors, and removing the driver from memory are similar
to that of the DTPRN driver, described elsewhere. The following is a
summary of the return codes returned by INT4DAPI:

0 INT4DAPI was successfully installed (no errors).
1 INT4DAPI is already resident.
2 Reserved.
3 Too many or invalid parameter(s) (INT4DAPI still loads).
4 Incompatible version of DOS (must be 2.0 or later).
5 DoubleTalk could not be located.

Function Calls

This section describes the functions supported by INT4DAPI. Those
functions which are extensions or additions to the original IBM
Speech Adapter BIOS functions are denoted by an asterisk (*).

All INT4DAPI functions are invoked by loading the AH register with
the desired function number, AL with the subfunction number (if
applicable), and calling software interrupt 4Dh (int 4Dh). On
return, the AL register will contain one of the following codes:

0 No errors encountered
1 Undefined command
2 Speech in progress

Ú--¿
³ Function 00h Reset ³
À--Ù

The Reset function initializes the LPC functions for 5220 data and
normal playback speed; no other function is performed.

RC SYSTEMS - 10 - DOUBLETALK TOOLS

Ú--¿
³ Function 01h CVSD ³
À--Ù

AL = 01h: Playback using speed table
DS:SI = segment:offset of CVSD data buffer

CX = length in bytes
BL = speed table (ignored)

AL = 03h: Playback using user-defined speed
DS:SI = segment:offset of CVSD data buffer

CX = length in bytes
BX = user speed divisor (ignored)

Ú--¿
³ Function 02h LPC (Background) ³
À--Ù

AL = 00h: LPC status

AL = 02h: LPC playback
DS:SI = segment:offset of LPC data buffer

CX = length in bytes

AL = 03h: LPC format/speed *
BL = format code:

0 = 5220 data/normal (default)
1 = 5220 data/fast
2 = D6 data/normal
3 = D6 data/fast

The LPC Background mode is simulated by utilizing the LPC data
buffer within DoubleTalk (no interrupt processing takes place,
however, as with the Speech Adapter). The 4096 byte limit of the
data buffer in the Speech Adapter does not apply to INT4DAPI.
Subfunction 3 sets the data format and playback speed for all
subsequent subfunction 2 calls.

Ú--¿
³ Function 03h LPC (Foreground) ³
À--Ù

AL = 00h: LPC status

AL = 02h: LPC playback
DS:SI = segment:offset of LPC data buffer

CX = length in bytes

AL = 03h: LPC format/speed *
BL = format code:

0 = 5220 data/normal (default)
1 = 5220 data/fast
2 = D6 data/normal
3 = D6 data/fast

RC SYSTEMS - 11 - DOUBLETALK TOOLS

The LPC Foreground mode is simulated by disabling the LPC data
buffer within DoubleTalk. The 4096 byte limit of the data buffer in
the Speech Adapter does not apply to INT4DAPI. Subfunction 3 sets
the data format and playback speed for all subsequent subfunction 2
calls.

Ú--¿
³ Function 04h PCM * ³
À--Ù

AL = 00h: PCM playback
DS:SI = segment:offset of PCM data buffer

CX = length in bytes
BL = sampling rate

AL = 01h: ADPCM playback
DS:SI = segment:offset of ADPCM data buffer

CX = length in bytes
BL = sampling rate

This function provides support for both PCM and ADPCM speech. Note
that the sampling rate parameter passed in register BL may take on
any value between 0 and 99d, corresponding to the 100 sampling rates
supported by DoubleTalk (e.g., BL = 78d programs a playback rate of
8 kHz). See the section "PCM Mode" below for more information.

Ú--¿
³ Function 05h TTS * ³
À--Ù

AL = 00h: TTS status
AH = TTS status flags

AL = 01h: Speak
DS:SI = segment:offset of TTS data buffer

CX = length in bytes
AH = TTS status flags

AL = 02h: Silence output
AH = TTS status flags

All TTS functions return the TTS synthesizer's status flags in
register AH (see "I/O Ports, TTS Port," below, for a complete
description of these flags). Any combination of text and commands
may be included in the TTS data buffer for subfunction 1. The tone
generators can also be used with this function by simply embedding
the appropriate command in the buffer.

RC SYSTEMS - 12 - DOUBLETALK TOOLS

HARDWARE I/O ---

There may be instances when you prefer to communicate directly with
DoubleTalk, or there's just no other way to get the job done (such
as using DoubleTalk's indexing feature). This section gives you the
necessary information to enable you to write your own DoubleTalk-
compatible drivers.

DoubleTalk PC

All DoubleTalk PC functions are carried out by merely reading and
writing to two I/O ports, located on the DoubleTalk card. In fact,
DoubleTalk PC is virtually transparent to the host system in that it
requires no memory-based text-to-speech software (unlike most other
internal synthesizers), requires no CPU overhead, IRQs nor DMA.

I/O ports

From a programmer's point of view, DoubleTalk PC is simply two
adjacent, eight bit I/O ports residing in the system memory map. One
port, called the LPC port, is used for operating the LPC synthesizer
and reading index markers. The second port, called the TTS port, is
used for all other functions: text-to-speech, tone generation, PCM
output, etc.

The six-position jumper block on the DoubleTalk card determines
where the two I/O ports are mapped into the system. The jumper sets
the base address, which is always the LPC port address. The TTS port
address is always one higher (base+1) than the LPC port. The section
"Detecting DoubleTalk" shows how to determine what these addresses
are.

CAUTION Whenever DoubleTalk PC updates the data at either
port, there is an inherent "settling" time for the
bits to stabilize. Although this is on the order
of only a few nanoseconds, it becomes significant
with today's faster machines. If you are
monitoring a port for a change in value, and also
need the value (such as a new index marker coming
in on the LPC port), you should read the port a
second time (after the change was detected), in
order to ensure reading a valid value.

LPC port

The LPC port is normally used only with the LPC synthesizer (except
when reading index markers from the TTS synthesizer; see "Indexing,"
below). It accepts standard LPC-10 speech data, in both 5220 and D6
data formats.

Before sending any LPC data, a Speak command byte must be issued to
the LPC synthesizer. The Speak command determines which LPC format

RC SYSTEMS - 13 - DOUBLETALK TOOLS

decoding table will be used by the hardware (5220 or D6), as well as
the speech rate. The four Speak commands are:

Cmd Format Speed

60h 5220 normal
64h 5220 fast
20h D6 normal
24h D6 fast

Reading the LPC port yields the following status information:

Bit # 7 6 5 4 3 2 1 0
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ TS ³ BL ³ BE ³ 1 ³ 1 ³ 1 ³ 1 ³ 1 ³
À------Á------Á------Á------Á------Á------Á------Á------Ù

Figure 3. LPC Port Status Flags

Bit 7 TS - Talk Status. When set to 1, indicates the LPC
synthesizer is producing speech.

Bit 6 BL - Buffer Low. When set to 1, indicates that the hardware
LPC data buffer has less than 30 bytes remaining. (Total
internal buffer size = 4096 bytes.)

Bit 5 BE - Buffer Empty. When set to 1, indicates that the LPC
data buffer ran out of data (error condition if TS is also
1).

Bits Reserved
4-0

The TS bit can be used to effectively disable the internal hardware
LPC buffer by waiting for it to drop to 0 before returning to the
application program.

The LPC repeat function is invoked by issuing the Speak command by
itself, without any LPC data. The command used does not necessarily
have to be the same as that used originally, although the data
format (5220 or D6) must be the same. For example, a program may use
the fast speed (64h) normally, and upon the user's request repeat
the last word or phrase at normal speed (60h).

See the DT_LPC.ASM file for a working example of how to send LPC
data to the LPC synthesizer.

TTS port

The TTS port handles all I/O between an application program and the
TTS, PCM and CVSD synthesizers and tone generators. Regardless of
the operating mode being used, data is written to the TTS port in

RC SYSTEMS - 14 - DOUBLETALK TOOLS

exactly the same manner, be it text, PCM audio samples, tone
generator values, etc. DoubleTalk knows how to interpret the data
based on a "mode command" you give it before sending the data (the
default mode is always TTS). TTS commands that control TTS voice
attributes, such as speed and pitch, are also written in the same
way, allowing them to be embedded in text for dynamic control of the
voice output.

Reading the TTS port returns several status flags which indicate
when DoubleTalk is able to accept another data byte, indicate when
it is talking, as well as the status of the TTS input buffer. The
bit definitions are described below.

Bit # 7 6 5 4 3 2 1 0
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ 0 ³ SYNC ³ SYNC2³ RDY ³ AF ³ AE ³ 0 ³ 0 ³
À------Á------Á------Á------Á------Á------Á------Á------Ù

Figure 4. TTS Port Status Flags

Bit 7 Reserved

Bit 6 SYNC - Sync. When set to 1, this bit indicates that
DoubleTalk is producing output (other than in LPC mode,
which has its own talk status bit). SYNC drops to 0
immediately after output has ceased.

Bit 5 SYNC2 - Early Sync. Same function as SYNC, except drops to 0
up to 0.4 second earlier when using the TTS synthesizer
(only). This enables a program to send another phrase to the
TTS synthesizer just before the current one has completed,
improving the response time.

Bit 4 RDY - Ready. When set to 1, indicates the TTS port is ready
to accept a byte of data.

Bit 3 AF - Almost Full. When set to 1, indicates that less than
300 bytes are available in the TTS input buffer. AF is
always 0 in the PCM, TGN and CVSD modes.

Bit 2 AE - Almost Empty. When set to 1, indicates that less than
300 bytes are remaining in DoubleTalk's input (TTS or PCM)
buffer. AE is always 1 in the TGN and CVSD modes.

Bits Reserved
1-0

Note that the SYNC flag can be used to effectively disable the
internal text/tone/PCM data buffers by waiting for it to drop to 0
before sending any more data to the synthesizer. See the DT_TTS.ASM
file for a working example of how to send data through the TTS port.

To avoid losing data, your program should test the RDY flag before
each byte is output. The DT_Tts routine included in the DT_TTS.ASM

RC SYSTEMS - 15 - DOUBLETALK TOOLS

file shows the recommended method of doing this. The only exception
to this rule is when stopping the TTS synthesizer with the ^X
character - in this case, the RDY flag should be ignored in order to
yield the fastest response time possible, as well as avoid
potentially long delays should the input buffer become full.

DoubleTalk LT

DoubleTalk LT operates from a serial port at 9600 baud, 8 data bits,
1 stop bit, and no parity (9600,N,8,1). All DoubleTalk functions
must be carried out through this port; there are no LPC or TTS ports
to perform low-level I/O through.

DoubleTalk LT indicates when it is ready for data using the DTR
hardware handshake protocol. Text, commands, and PCM/TGN data are
sent to DoubleTalk by simply writing them to the serial port's
transmit register. The source code in the DT_TTS.ASM file provide
examples of how to communicate with DoubleTalk LT at the register
level.

Using DoubleTalk LT's LPC synthesizer is quite different than
DoubleTalk PC's. This is because the LT emulates several of the
external Echo synthesizers (for compatibility with the Apple II and
Macintosh platforms, for which the LT was originally designed). LPC
driver source code, compatible with both the PC and LT, can be found
in the file DT_LPC.ASM.

PCM mode with the LT is a bit convoluted, because at a sampling rate
of 8 kHz (64 kbps), it would require more than eight seconds at 9600
baud to transmit each second's-worth of speech! The data transfer
rate problem is overcome by automatically kicking the baud rate up
to 115,200 baud while in the PCM/ADPCM modes.

If you need to support the LPC and/or PCM modes of both DoubleTalks,
you may save yourself a lot of time by using the INT4DAPI driver,
described elsewhere. This driver takes care of all the details of
finding DoubleTalk, getting data to it, ADPCM decoding, etc. The
Basic and C libraries, DTQB.LIB, DTQBX.LIB, and DTC.LIB, take care
of the housekeeping for you as well in the Basic and C environments.
(If you *really* must see PCM source code, see the file DT_PCM.ASM,
on this disk.)

Reading the LT's SYNC flag

DoubleTalk PC has a convenient means of detecting when it is talking
(see "I/O Ports, TTS Port," above, for a description of its two SYNC
flags). DoubleTalk LT conveys this information in two ways, one
using a COM port status bit (the "hardware" method), the other
utilizing a sort of "software handshake" protocol. The Protocol
Options command, described below, determines which method will be
used.

The hardware sync method is usually the easiest to implement, and is
therefore the recommended method to use. The LT's sync information
is carried on the serial port's RI (Ring Indicator) line, and will

RC SYSTEMS - 16 - DOUBLETALK TOOLS

read zero (0) when SYNC is *true* (active). The following code
fragment illustrates this:

mov dx,TTS_Port ; LT's COM port base address
add dx,6 ; Modem Status Register
in al,dx ; read status
test al,40h ; test RI (SYNC)
jz Talking ; zf = 1 if SYNC = 1
jnz Silent ; zf = 0 if SYNC = 0

Protocol Options command

This command controls several internal operating parameters in
DoubleTalk. The command is ^AnG, where n is an ASCII decimal number
between 0 and 63. The number is calculated by ORing together the
individual control bits, shown below. For example, the command 9G
enables software synchronization with Sync2 timing. There are no
restrictions in the way parameters can be combined; for example, you
can enable software and/or hardware synchronization, or disable both
of them. Note that bits 4 and 5 are the only bits that have any
meaning to DoubleTalk PC. 2G is the default setting.

Bit # 7 6 5 4 3 2 1 0
Ú------Â------Â------Â------Â------Â------Â------Â------¿
³ 0 ³ 0 ³ 0/1 ³ 0/1 ³ 0/1 ³ 0/1 ³ 0/1 ³ 0/1 ³
À------Á------Á------Á------Á------Á------Á------Á------Ù

³ ³ ³ ³ ³ ³
³ ³ ³ ³ ³ ³
³ ³ ³ ³ ³ ³

DtmfDur --------------Ù ³ ³ ³ ³ ³
³ ³ ³ ³ ³

HiAscEn ---------------------Ù ³ ³ ³ ³
³ ³ ³ ³

Sync2En ----------------------------Ù ³ ³ ³
³ ³ ³

DsrEn -----------------------------------Ù ³ ³
³ ³

HSyncEn --Ù ³
³

SSyncEn ---Ù

Figure 5. Protocol Options Control Bits

The control bits are defined as follows:

Bits Reserved (write "0" to ensure future compatibility).
7-6

Bit 5 DtmfDur - DTMF Duration. Selects DTMF (Touch-Tone) generator
burst duration (n* command). When set to 1, tone bursts will
be 500 ms duration instead of 100 ms. Default: 100 ms (0).

Bit 4 HiAscEn - High ASCII Enable. When set to 1, enables extended
ASCII character set (128d - 255d) recognition. Generally

RC SYSTEMS - 17 - DOUBLETALK TOOLS

used only in conjunction with an exception dictionary for a
foreign language. When disabled, the high-order bit of all
ASCII text is masked. Default: Disabled (0).

Bit 3 Sync2En - Early Sync Enable. Enables Sync2 timing when set
to 1. If enabled, software and hardware sync endings occur
approximately 0.4 second early. If disabled, sync endings
coincide with actual ending of speech production. This
control bit corresponds to choosing between the SYNC and
SYNC2 flags found in DoubleTalk PC (see TTS port flag
definitions, above). Default: Disabled (0).

Bit 2 DsrEn - DSR Enable. Enables DSR handshaking when set to 1.
If enabled, DoubleTalk will not transmit data to the host if
the DSR serial status line is false, except for index
markers, where DSR is ignored. Default: Disabled (0).

Bit 1 HSyncEn - Hardware Sync Enable. Enables hardware
synchronization. If enabled, DoubleTalk carries sync status
on the RI (Ring Indicator) serial status line. End timing is
affected by Sync2En. Default: Enabled (1).

Bit 0 SSyncEn - Software Sync Enable. Enables software
synchronization. If enabled, DoubleTalk transmits ASCII "B"
when speech begins, and "E" when speech ends. End timing is
affected by Sync2En. Default: Disabled (0).

Detecting DoubleTalk

Because it is generally unknown which DoubleTalk any particular
system has, if any, and which port addresses or COM port are used,
the first thing a DoubleTalk driver must do is determine if
DoubleTalk is present, and where.

The DoubleTalk drivers and libraries supplied on this disk all
incorporate a common routine for determining if DoubleTalk is
present, and where it is located. The source code for this routine
can be found in the DT_TTS.ASM file (DT_Init). This routine
determines what the LPC and TTS I/O port addresses are if DoubleTalk
PC was detected, or the base address of the COM port if DoubleTalk
LT was detected. The routine also initializes DoubleTalk to the
factory default settings.

CAUTION The method used to detect DoubleTalk PC assumes
that the TTS and LPC ports will have certain
specific values when they are read, forming a
"signature" that is unique to DoubleTalk PC. If
DoubleTalk happens to be talking at the time
DT_Init looks for it, it will not be able to
locate DoubleTalk, since one or both of the ports
will have status bits that are in the "wrong"
state. For similar reasons, DoubleTalk LT must
also be idle in order for it to be detected.

RC SYSTEMS - 18 - DOUBLETALK TOOLS

Indexing

Index markers are non-speaking "bookmarks" that are used to monitor
the progress of speech. This way, a program can tell where
DoubleTalk is speaking within a passage of text.

The command to send an index marker to either DoubleTalk is ^AnI,
where n is an ASCII number between 0 and 99. Thus, up to 100 unique
markers may be active at any given time. If your program uses
incrementing markers between each word, a simple way to implement
this is to use DoubleTalk's "relative parameter" capability, by
issuing the command ^A+1I for each marker. When the count reaches
99, it will automatically wrap around to 0 and start over again.

When DoubleTalk has spoken the text up to a marker, it transmits the
marker number back to the program. Note that this value is a
binary number between 0 and 99, *not* an ASCII number as was used
in the command to place the marker. This allows the marker to be
transmitted as a one-byte value.

The actual method of transmission and how markers are received, is
where the two DoubleTalks part ways.

DoubleTalk PC

DoubleTalk PC transmits index markers through its LPC port. As long
as the LPC synthesizer is idle, the value at the port will be 7Fh.
If an index marker comes in, however, the port's value will change
to a value between 0 and 63h (0-99d), and will not change until
another marker comes (which will overwrite the previous one).

If you use only one marker value in your program, the value FFh
should be written to the LPC port each time a new marker is read.
This "clears" the marker (to 7Fh), enabling your program to detect
when a new marker comes in. (If you use more than one marker value,
such as two alternating values, this step would not be necessary.)
Clearing the TTS synthesizer with any of the following TTS commands
(through the TTS port) will also clear the marker from the LPC port:

^X (Clear)
^A@ (Reinitialize)

Clearing the marker in this manner also resets the relative index
value, ensuring that relative indexing always begins at 0.

It is also good practice before quitting your application, that you
issue one of these commands (preferably ^A@) to force the LPC status
back to its normal (idle) state. Otherwise, the next application may
not be able to find DoubleTalk (since most "find" routines expect
the LPC port status value to be 7Fh).

DoubleTalk LT

DoubleTalk LT transmits index markers via its serial port. Normally,
an interrupt handler in your program that processes incoming

RC SYSTEMS - 19 - DOUBLETALK TOOLS

characters from the COM port will handle the markers. Since the
interrupt handler is invoked only when a new index marker comes in,
it is not necessary to "clear" the marker, as with DoubleTalk PC.

CAUTION The Echo-emulation feature of DoubleTalk LT
recognizes 40h ('@') as a request for the LPC
synthesizer's status. This causes a one-byte value
to be emitted from the serial port whenever '@' is
transmitted to DoubleTalk LT. Take precautions to
ensure that your program does not interpret this
as a spurious marker - this can be done either by
filtering any '@' characters from the text, or by
checking that each received marker is within
limits (0 to 99). The LPC status byte is generally
a much larger number (usually 251), far outside
the range of valid markers.

Not all DoubleTalks support indexing!

Early DoubleTalks *PCs* did not support indexing (all LT models do).
To prevent your application from hanging up by waiting for index
markers that may never come, it should first determine if the
DoubleTalk card it is using supports indexing. The easiest way to
determine this is to send it an index marker followed by a return or
null character. If nothing comes back (i.e., the LPC port doesn't
change in value from 7Fh), the card doesn't support indexing.
Earlier version DoubleTalk PCs can be updated to support indexing
with a simple user-installable ROM upgrade.

Interrogating DoubleTalk

The ^A? command built into both DoubleTalks enables a program to
read the current settings of DoubleTalk anytime. The values returned
from the Interrogate command are, in order, as follows:

Serial number word; 0-7Fh:0-7Fh
ROM version variable length string terminated by CR
Mode byte; C/D/T; 0=Character; 1=Phoneme; 2=Text
Punc level byte; nB; 0-7
Formant freq byte; nF; 0-9
Pitch byte; nP; 0-99
Speed byte; nS; 0-9
Volume byte; nV; 0-9
Tone byte; nX; 0-2
Expression byte; nE; 0-9
Exc dict loaded byte; L; 1=exception dictionary loaded; 0

otherwise
Exc dict status byte; U; 1=exception dictionary enabled; 0

otherwise
Free RAM byte; L; # pages (truncated) remaining for text

buffer - function of dictionary size and RAM chip
installed (8K/32K)

Articulation byte; nA; 0-9

RC SYSTEMS - 20 - DOUBLETALK TOOLS

Reverb byte; nR; 0-9
End of block byte; 7Fh value indicating end of parameter block

The number of parameters could change in the future, so it is
recommended that the End of Block byte (7Fh) be used for determining
when all of the data has been read from DoubleTalk.

The file DT_INTGT.ASM shows how to interrogate DoubleTalk from
assembly language programs. The supplied Basic and C libraries also
have their own equivalent interrogation functions built in.

MUSICAL TONE GENERATOR ---

DoubleTalk contains a three-voice musical tone generator, which can
be used for creating music and sound effects. This section explains
how to program the generator. DoubleTalk also contains a sinusoidal
generator, which is covered in the next section.

The musical tone generator is activated with the ^AJ command. Once
activated, all data output to DoubleTalk is directed to the tone
generator. (Note: DoubleTalk assumes that tone generator data will
immediately follow the ^AJ command; therefore, do not terminate the
command with a carriage return or null.)

The tone generator is controlled by four, four-byte data and command
frames, known as Initialize, Voice, Play, and Quit. With these, the
programmer can control the volume, duration, and frequency of each
of the three voices.

Initialize Command

The Initialize command sets up the tone generator's amplitude and
tempo (speed). The host must issue this command to initialize the
tone generator before sending any Voice frames. The Initialize
command may, however, be issued anytime afterward to change the
volume or tempo on the fly.

Byte 0 1 2 3
Ú------Â------Â------Â------¿ Ú------Â------Â------Â------¿
³ 0 ³ Ka ³ Ktl ³ Kth ³ ³ Kd ³ K1 ³ K2 ³ K3 ³
À------Á------Á------Á------Ù À------Á------Á------Á------Ù
Initialize command Voice frame

Ú------Â------Â------Â------¿ Ú------Â------Â------Â------¿
³ 0 ³ 0 ³ 1 ³ 1 ³ ³ 0 ³ 0 ³ 0 ³ 0 ³
À------Á------Á------Á------Ù À------Á------Á------Á------Ù
Play command Quit command

Figure 6. Tone Generator Command Formats

RC SYSTEMS - 21 - DOUBLETALK TOOLS

Initialize command format

The Initialize command consists of a byte of zero and three
parameters (Figure 6). The parameters are defined as follows:

Ka Voice amplitude (1-255)
Ktl Tempo, low byte (0-255)
Kth Tempo, high byte (0-255)

The overall range of the tempo Kt (Ktl and Kth) is 1-65,535
(1-FFFFh); the larger the value, the slower the overall speed of
play. The amplitude and tempo affect all three voices, and stay in
effect until another Initialize command is issued. If the command is
issued between Voice frames to change the volume or tempo on the
fly, only Voice frames following the command will be affected.

Voice Frame

Voice frames contain the duration and frequency (pitch) information
for each voice. All Voice frames are stored in a 4K buffer within
DoubleTalk, but are not played until the Play command is issued. If
the number of Voice frames exceeds 4K bytes in length, DoubleTalk
will automatically begin playing the data.

Voice frame format

Voice frames (Figure 6) consist of three frequency time constants
(K1-K3) and duration byte (Kd), which specifies how long the three
voices are to be played. The relationship between the time constant
Kn and the output frequency fn is:

fn = 16,768/Kn

where fn is in Hertz and Kn = 4-255. Setting Kn to zero will silence
voice n during the frame.

The Kd parameter may be programmed to any value between 1 and 255.
The larger Kd is made, the longer the voices will play during the
frame.

Table 1 greatly simplifies the task of finding Kn for a particular
musical note. The tone generator can cover a four-octave range, from
C two octaves below Middle C (Kn = 255), to D two octaves above
Middle C (Kn = 14). Kn values less than 14 are not recommended.For
example, the Voice frame

DATA 24,64,0,0

will play Middle C using voice 1 (K1 = 64). Since K2 and K3 are
zero, voices 2 and 3 will be silent during the frame. The duration
of the note is a function of both the tempo Kt and duration Kd,
which in this case is 24.

As another example,

RC SYSTEMS - 22 - DOUBLETALK TOOLS

DATA 48,64,51,43

plays a C-E-G chord, for a duration twice as long as the previous
example.

Note Kn Note Kn
--------------- ---------------
C 255 (FFh) D 57 (39h)
C# 241 (F1h) D# 54 (36h)
D 228 (E4h) E 51 (33h)
D# 215 (D7h) F 48 (30h)
E 203 (CBh) F# 45 (2Dh)
F 192 (C0h) G 43 (2Bh)
F# 181 (B5h) G# 40 (28h)
G 171 (ABh) A 38 (26h)
G# 161 (A1h) A# 36 (24h)
A 152 (98h) B 34 (22h)
A# 144 (90h) C 32 (20h)
B 136 (88h) C# 30 (1Eh)
C 128 (80h) D 28 (1Ch)
C# 121 (79h) D# 27 (1Bh)
D 114 (72h) E 25 (19h)
D# 107 (6Bh) F 24 (18h)
E 101 (65h) F# 23 (17h)
F 96 (60h) G 21 (15h)
F# 90 (5Ah) G# 20 (14h)
G 85 (55h) A 19 (13h)
G# 81 (51h) A# 18 (12h)
A 76 (4Ch) B 17 (11h)
A# 72 (48h) C 16 (10h)
B 68 (44h) C# 15 (0Fh)
C-Mid 64 (40h) D 14 (0Eh)
C# 60 (3Ch)

Table 1. Musical Pitch/Kn Values

Choosing note durations and tempo

Table 2 lists suggested Kd values for each of the standard musical
note durations. This convention permits shorter (1/64th note) and
intermediate note values to be played, while maintaining the same
degree of accuracy. This is important when, for example, a thirty-
second note is to be played staccato, or a note is dotted
(multiplying its length by 1.5).

Using the suggested values, it turns out that most musical scores
sound best when played at a tempo of 255 or faster (i.e., Kth = 0).
Of course, the "right" tempo is the one that sounds the best.

RC SYSTEMS - 23 - DOUBLETALK TOOLS

Note Duration Kd

Whole 192 (C0h)
Half 96 (60h)
Quarter 48 (30h)
Eighth 24 (18h)
Sixteenth 12 (0Ch)
Thirty-second 6 (06h)

Table 2. Duration/Kd Values

Play Command

The Play command causes the voice data in the buffer to begin
playing. Additional Initialize commands and Voice frames may be sent
to DoubleTalk while the tone generator is operating. DoubleTalk's
SYNC flag is set during this time, enabling the host to synchronize
to the playing of the tone data. SYNC returns to zero after all of
the data has been played.

Quit Command

The Quit command marks the end of the tone data in the input buffer.
DoubleTalk will play the contents of the buffer up to the Quit
command, then return to the text-to-speech mode that was in effect
when the tone generator was activated. Once the Quit command has
been issued, DoubleTalk will not accept any more data until the
entire buffer has been played.

Example Tune

Listing 1 is a simple Basic program which reads tone generator data
from a list of DATA statements, and LPRINTs each value to
DoubleTalk. The program assumes that the DTPRN printer emulator has
been installed as port LPT1 (see "Printer Emulator," above).

100 REM tone generator demo
110 LPRINT CHR$(1);"J";: REM activate tone generator
120 READ B0,B1,B2,B3: REM read a frame (4 bytes)
130 LPRINT CHR$(B0);CHR$(B1);CHR$(B2);CHR$(B3);
140 IF B0+B1+B2+B3 > 0 THEN 120: REM loop until Quit
150 END
160 '
170 '
180 REM data tables:
190 '
200 REM Init (volume = 255, tempo = 86)
210 DATA 0,255,86,0
220 '
230 REM Voice data
240 DATA 46,48,64,192, 2,0,64,192, 48,48,0,0, 48,40,0,0, 48,36,0,0
250 DATA 94,24,34,0, 2,24,0,0, 24,0,36,0, 24,0,40,0, 48,0,48,0
260 DATA 48,40,0,192, 46,36,0,0, 2,0,0,0, 48,36,0,0, 48,24,34,0

RC SYSTEMS - 24 - DOUBLETALK TOOLS

270 DATA 46,24,34,0, 2,0,34,0, 46,24,34,0, 2,24,0,0, 24,0,36,0
280 DATA 24,0,40,0, 48,0,48,0
290 '
300 REM Play, Quit
310 DATA 0,0,1,1, 0,0,0,0

Listing 1. Example Tone Generator Program

The astute reader may have noticed some "non-standard" note
durations (according to Table 2) in the DATA statements, such as the
first two Voice frames in line 240. According to the original music,
some voices were not to be played as long as the others during the
beat. The F-C-F notes in the first frame are held for 46 counts,
while the low F and C in the second frame are held for two
additional counts. Adding the duration (first and fifth) bytes
together, the low F and C do indeed add up to 48 counts (46 + 2),
which is the duration of a quarter note.

SINUSOIDAL TONE GENERATOR --

The musical tone generator is capable of producing three tones
simultaneously, and works well in applications which require neither
precise frequencies nor a "pure" (clean) output. The output is a
pulse train rich in harmonic energy, which tends to sound more
interesting than pure sinusoids in music applications.

DoubleTalk's sinusoidal tone generator enables the simultaneous
generation of two sinusoidal waveforms. Applications for this
generator range from generating simple tones to telephone call-
progress tones (such as a dial tone or busy signal). The frequency
range is 0 to 2746 Hz, with a resolution of 4 to 11 Hz.

The sinusoidal tone generator is activated with the command ^AnJ,
where n is an ASCII number between 0 and 99. Note the similarity to
the musical tone generator command, ^AJ, which uses no parameter.
The parameter n programs the internal sampling rate, much like the
buffered PCM mode command does; in fact, the sampling rate fs has
the same relationship to n as the PCM mode command:

fs = 617/(155 - n)

Immediately following the command are three *binary* (not ASCII)
parameter bytes:

^AnJ Kd K1 K2

where Kd determines the tone duration, and K1 and K2 set the output
frequencies of generators 1 and 2, respectively. The tone duration
and frequencies are not only functions of these parameters, but of n
as well. The output amplitude is a function of the TTS synthesizer's
Volume command (^AnV). The command and parameter values are buffered
within DoubleTalk, and can be intermixed with text for the TTS
synthesizer without restriction.

RC SYSTEMS - 25 - DOUBLETALK TOOLS

The tone duration Td is calculated as follows:

Td = Kd x 256/fs (sec)

where 0 ó Kd ó 255. Substituting the relationship fs = 617/(155 - n)
into the above equation,

Td = Kd x (155 - n)/2410 (sec)

Setting Kd = 1 yields the shortest duration; Kd = 0 (treated as 256)
the longest. Depending on the value of n, Td can range from 23 ms to
16.5 sec.

The tone frequencies F1 and F2 are computed as follows:

Fn = Kn x fs/1024 (Hz)

where 0 ó Kn ó 255. Substituting the relationship fs = 617/(155 - n)
into this equation,

Fn = Kn x 603/(155 - n) (Hz)

Depending on the value of n, Fn can range from 0 Hz to 2746 Hz. If
only one tone is to be generated, the other tone frequency may be
set to 0 (Kn = 0), or equal in frequency. Note, however, that due to
the additive nature of the tone generators, the output amplitude
from both generators running at the same frequency will be twice
that of just one generator running. Both K1 and K2 may be set to 0
to generate silence.

Note that the frequency step size and frequency range are strictly
functions of n. In general, the larger n is, the larger the step
size and range will be. The parameter Kn can be thought of as a
multiplier, which when multiplied by the step size, yields the
output frequency. For example, setting n = 95 (corresponding to an
internal sampling rate of 10.28 kHz) results in a frequency step
size of 603/(155 - 95) Hz, or 10 Hz. Thus, the output frequency
range spans 0 Hz to 255 x 10 Hz, or 2550 Hz, in 10 Hz steps.

As an example, suppose an application needed to generate the tone
pair 440/350 Hz (a dial tone) for say, 2.5 seconds. We will
arbitrarily choose n = 95. The tone duration parameter Kd is
calculated as follows:

Kd = 2410 x Td/(155 - n)

substituting Td = 2.5 (sec) and n = 95,

Kd = 2410 x 2.5/(155 - 95) = 100

K1 (440 Hz) is computed follows:

K1 = F1 x (155 - n)/603

= 440 x (155 - 95)/603 = 44

In like manner, K2 (350 Hz) is computed to be 35.

RC SYSTEMS - 26 - DOUBLETALK TOOLS

In order to embed the command in a text file, the computed values
are converted to their ASCII equivalents (100 = 'd', 44 = ',', and
35 = '#'). The complete command becomes

^A95Jd,#

which can be embedded within normal text for the TTS synthesizer.

EXCEPTION DICTIONARIES ---

Exception dictionaries make it possible to alter the way the TTS
synthesizer speaks any string of characters. This is useful for
correcting mispronounced words, or even speaking foreign languages.
This section describes how to create exception dictionaries for
DoubleTalk.

The Text and Character modes of the TTS synthesizer rely on a set of
ROM-based English pronunciation rules for converting text sent from
the host into speech. These rules determine which sounds, or
phonemes, each character will receive. The position of each letter
in a word, as well as its context, is considered by each rule.
DoubleTalk analyzes text in its input buffer by applying these rules
to each word or character, depending on the translation mode in use.
Exception dictionaries augment this process by defining exceptions
(or even replacing) the ROM-based rules.

Exception dictionaries can be created and edited with word
processors or editors that store documents as standard text (ASCII)
files. However, the text file must be compiled into the internal
format used by DoubleTalk before it can be loaded, using the
COMPILE.COM program included on the Developer's Tools disk.

Exception Syntax

Exceptions have the general form

L(F)R=P

which means "the text fragment F, occurring with left context L and
right context R, gets the pronunciation P." All three parts of the
exception to the left of the equality sign must be satisfied before
the text fragment will receive the pronunciation given by the right
side of the exception. Exceptions are always terminated by a
carriage return character.

The text fragment defines the characters that are to be translated
by the exception, and may consist of any combination of letters,
numbers, and symbols. The text fragment must always be contained
within parentheses.

Characters to the left of the text fragment specify the left context
(what must come before the text fragment in the input string), and
characters to the right define the right context. Both contexts are
optional, so an exception can contain neither, either, or both
contexts. There are also 13 special symbols, or context tokens, that

RC SYSTEMS - 27 - DOUBLETALK TOOLS

can be used in an exception's context definitions. The tokens and
their meanings are given in Table 3.

Symbol Definition

A vowel: a, e, i, o, u, y
+ A front vowel: e, i, y
^ A consonant: b, c, d, f, g, h, j, k, l, m,

n, p, q, r, s, t, v, w, x, z
* One or more consonants
: Zero or more consonants
? A voiced consonant: b, d, g, j, l, m, n,

r, v, w, z
@ One of: d, j, l, n, r, s, t, z, ch, sh, th
! One of: b, c, d, f, g, p, t
% A suffix: e(s), ed(ly), er(s), ely, ing(s),

ingly, ement(s), eless, eness, able(s) (must
also be followed by a non-alphabetic character)

& A sibilant: c, g, j, s, x, z, ch, sh
$ Any nonalphabetic character (includes

numbers, spaces, etc.)
\ A digit (0-9)
| One or more digits

Table 3. Context Tokens

The right side of an exception (P) specifies the pronunciation that
the text fragment is to receive, consisting of zero or more valid
phonemes (listed in Table 5 of the DoubleTalk PC/LT User's Manual).
If no pronunciation is given (no phonemes), no sound will be given
to the text fragment, i.e., the text fragment will be silent.

A dictionary file may also contain comments, but they must be on
lines by themselves (i.e., they cannot be on the same line as an
exception). Comment lines begin with a semicolon character (;), so
that the compiler will know to skip over it.

An example of an exception is

C(O)N=AA

which states that o after c and before n gets the pronunciation AA,
the o-sound in cot. For example, the o in conference, economy, and
icon would be pronounced according to this exception.

Another example is

$R(H)=

This exception states that h after initial r is silent, as in the
word rhyme (the $ context token represents any non-alphabetic
character, such as a space between words; see Table 3).

Punctuation, numbers, and most other characters can be redefined
with exceptions as well:

RC SYSTEMS - 28 - DOUBLETALK TOOLS

(5)=S I NG K O (Spanish five)
(CHR$)=K EH R IX K T ER (Basic function)

Note that although these examples do not contain any context
definitions, parentheses are still used around the text fragments.

The Translation Algorithm

DoubleTalk's text-to-speech algorithm works much like the human
brain does when reading printed text. The algorithm scans input text
from left to right and, for each character scanned, sequentially
searches a list of pronunciation rules until it finds one that
matches the character in the correct position and context. When a
matching rule is found, the algorithm passes over the input
characters bracketed in the rule (the text fragment), and assigns
the pronunciation given by the right side of the rule to it.
Scanning then resumes with the next character of text.

As an illustration of how the translation algorithm works, let's see
how it would translate the word receive, using the ROM-based Text
mode pronunciation rules.

The algorithm begins scanning at the letter r and searches the R
pronunciation rules for a match. The first rule that matches is
$(RE)^#=R IH, because the r in receive is an initial r and is
followed by an e, a consonant (c), and a vowel (e). Consequently,
the text fragment re receives the pronunciation R IH, and the scan
moves past re to the next character: reCeive. (E is not the next
scan character because it occurred inside the parentheses with the
r; the fragment re as a whole gets the pronunciation R IH.)

The first match among the C rules is (C)+=S, because c is followed
by an e, i, or y. C thus receives the pronunciation S, and
processing continues with the second e: recEive.

(EI)=IY is the first rule to match the second e, so ei receives the
sound IY. Scanning resumes at the character receiVe, which matches
only the default V rule, (V)=V.

The final e matches the rule #:(E)$=, which applies when e is final
and proceeds zero or more consonants and a vowel. Consequently, e
receives no sound and scanning continues with the following word or
punctuation, if any. Thus, the entire phoneme string for the word
receive is R IH S IY V, which is the correct transcription.

Rule precedence

Since DoubleTalk uses its translation rules in a sequential manner,
the position of each exception relative to any others must be
carefully considered. For example, consider the following pair of
exceptions:

(O)+=OW
(O)=UW

RC SYSTEMS - 29 - DOUBLETALK TOOLS

The first exception states that o followed by e, i, or y is to be
pronounced OW, the o-sound in boat. The second exception does not
place any restriction on what must come before or after o, so o in
any context will match and receive the UW pronunciation. Note that
if the exceptions were reversed, the (O)+ exception would never be
reached since the (O) exception will always match o in any context.
In general, tightly-defined exceptions (those containing many
context restrictions) should precede loosely-defined exceptions
(those with little or no context definitions).

(RAT)=R AE T
(RATING)=R EY T IH NG
(R)=R

This is an example of how *not* to organize exceptions. The
exception (RATING) will never be used because (RAT) will always
match first. According to these exceptions, the word rating would be
pronounced "rat-ing."

It can be beneficial to also group exceptions by the first character
of the text fragments, that is, all of the A exceptions in one
group, all the B exceptions in a second group, and so on. This gives
an overall cleaner appearance, and can prove to be helpful if the
need arises to troubleshoot any problems in your dictionary.

Text not matched by the dictionary

It is possible that some input text will not match any of the
exceptions, depending on the nature of the exception dictionary. For
example, if a dictionary was written to handle unusual words, only
those words would be defined by the exceptions. In this case, no
other words would be handled by the exceptions. On the other hand,
if the dictionary defined the pronunciation for another language, it
would probably be comprehensive enough to handle most all types of
input. In any case, if an exception is not found for a particular
character, the English pronunciation will be given to that character
according to the built in (ROM) English pronunciation rules.

Generally, the automatic switchover to the ROM rules is desirable if
the dictionary is used to correct mispronounced words, since in
essence it is defining exceptions to the ROM rules. If the automatic
switchover is not desired, however, there are two ways to prevent it
from occurring. One way is to end each group of exceptions with an
unconditional exception that matches any context. To ensure the
letter "a" will always be matched, for example, end the A exception
group with the exception (A)=pronunciation. This technique works
well to ensure matches only for specific characters, such as certain
letters or numbers.

If the exception dictionary is to replace the ROM rules entirely,
end the dictionary with the following exception:

()=

RC SYSTEMS - 30 - DOUBLETALK TOOLS

This special exception causes unmatched characters to simply be
ignored, rather than receive the pronunciation defined by the ROM
rules.

Effect on punctuation

Punctuation defined in the exception dictionary has priority over
the Punctuation Filter command. Any punctuation defined in the
dictionary will be used, regardless of the Punctuation Filter
setting. However, if the dollar sign ($) character is defined in the
text fragment of any exception, currency strings will not be read as
dollars and cents.

Character mode exceptions

The information presented thus far applies to both the Text and
Character modes of DoubleTalk. Character mode exceptions, however,
can be defined independently of the Text mode exceptions, or be
included as a subset of them to avoid duplicating similar
exceptions.

The beginning of the Character mode exceptions is defined by
including the character C between the last Text exception and the
first Character exception. No exceptions prior to this marker will
be used when DoubleTalk is in Character mode. For example:

. (Text mode exceptions)

.
()= (optional; if Character mode exceptions are

not to be used in Text mode)

C (Character mode exceptions marker)
.
. (Character mode exceptions)
.

()= (optional; used if ROM rules are not to be
used in no-match situations)

Applications

The following examples were chosen to give you some ideas of how the
exception dictionary can be used.

Correcting mispronounced words

The most obvious of all applications; mispronounced words can be
corrected by writing exceptions for them.

(SEARCH)=S ER CH
(OK)=OW K EY

RC SYSTEMS - 31 - DOUBLETALK TOOLS

The first exception corrects the pronunciation of all words
containing search (search, searched, research, etc.). As this
exception exemplifies, it is only necessary to define the problem
word in its root form, and only the part of the word that is
mispronounced (ear in this case). The second exception corrects the
word ok, but because of the left and right contexts, will not cause
other words (joke, look, etc.) to be incorrectly translated.

No cussing, please!

The speaking of specific characters or words can be suppressed by
writing "null" exceptions for them, that is, exceptions in which no
pronunciation is given.

(????)= (YOU fill in the blanks!)

When 0 is not zero

When we read addresses or lists of numbers, we often substitute the
word "oh" for the digit 0. For example, we might say 1020 North
Eastlake as "one oh two oh North Eastlake." The digit 0 can be
redefined in this manner with the following exception:

(0)=OW

Arithmetic operators

Some characters may have more than one name; for example, / may be
read as "slash" or "divided by," depending on the context. Such
characters can be redefined if their default names don't fit the
application. For example, the arithmetic operators (/, *, ^, etc.)
can be defined for mathematical applications with the following
exceptions:

(/)=D IH V AY D IH D B AY
(*)=M AH L T IH P L AY D B AY
(^)=R EY Z D T UW
.
.

etc.

Acronyms and abbreviations

Acronyms and abbreviations can be defined so the words they
represent will be spoken:

(KW)=K IH L OW W AA T
(DR)=D AA K T ER
(TV)=T EH L AX V IH ZH IX N

RC SYSTEMS - 32 - DOUBLETALK TOOLS

Heteronyms

Heteronyms are words that have similar spellings but are pronounced
differently, depending on the context, such as read ("reed" and
"red") and wind ("the wind blew" and "wind the clock"). Exceptions
can be used to fix up these ambiguities, by including non-printing
(Control) characters in the text fragment of the exception.

Suppose a line of text required the word "close" to be pronounced as
it is in "a close call," instead of as in "close the window." The
following exception changes the way the s will sound:

(^DCLOSE)=K L OW S

Note the Control-D character (^D) in the text fragment. Although a
non-printing character, the translation algorithms treat it as they
would any printing character. Thus, the string "^D close" will be
pronounced with the s receiving the "s" sound, wherever it appears
in the text stream. Plain "close" (without the Control-D) will be
unaffected-the s will still receive the "z" sound. It does not
matter where you place the Control character in the word, as long as
you use it the same way in your application's text. You may use any
non-printing character (except LF and CR) in this manner.

Foreign languages

Dictionaries can be created that enable DoubleTalk to speak in
foreign languages. It's not as difficult as it may first seem-all
that is required is a high school level foreign language textbook
and a bit of patience. If you don't have a book for the language
you're interested in, check your local library. Most libraries have
foreign language dictionaries that include pronunciation guides,
which make it easy to transcribe the pronunciation rules into
exception form. The Spanish exception file, SPANISH.EXC, was written
using this method.

Language translation

Exception dictionaries even allow DoubleTalk to read foreign
language text in English! The following exceptions demonstrate how
this can be done with three Spanish/English words.

(GRANDE)=L AA R J
(BIEN)=F AY N
(USTED)=YY UW

The sense of translation can also be reversed:

(LARGE)=G R A N D EI
(FINE)=B I EI N
(YOU)=U S T EI DH

RC SYSTEMS - 33 - DOUBLETALK TOOLS

Tips

Make sure that your exceptions aren't so broad in nature that they
do more harm than good. Exceptions intended to fix broad classes of
words, such as word endings, are particularly notorious for ruining
otherwise correctly pronounced words.

Take care in how your exceptions are organized. Remember, an
exception's position relative to others is just as important as the
content of the exception itself.

Exception anomalies

On rare occasions, an exception may not work as expected. This
occurs when the ROM-based pronunciation rules get control before the
exception does. The following example illustrates how this can
happen.

Suppose an exception redefines the o in the word "process" to have
the long "oh" sound, the way it is pronounced in many parts of
Canada. Since the word is otherwise pronounced correctly, the
exception redefines only the "o:"

PR(O)CESS=OW

But much to our horror, DoubleTalk simply refuses to take on the new
Canadian accent.

It so happens DoubleTalk has a rule in its ROM which looks something
like this:

$(PRO)=P R AA

This rule translates a group of three characters, instead of only
one (as most of the ROM rules do). Because the text fragment PRO is
translated as a group, the o is processed along with the initial
"pr," and consequently the exception never gets a shot at the o.

If you suspect that this may be happening with one of your
exceptions, include more of the left-hand side of the word in the
text fragment (in the example above, (PRO)=P R OW would work).

EXCEPTION COMPILER ---

The COMPILE.COM program is used to compile exception dictionaries
for DoubleTalk's TTS synthesizer. Since the input (source) to the
compiler is, and must be, a plain ASCII text file, exception
dictionaries can be written and edited with any word processor or
text editor, such as DOS 5.0's EDIT program.

You can compile exception dictionaries in either of the following
ways:

RC SYSTEMS - 34 - DOUBLETALK TOOLS

1. Type all the information on the command line, using the following
syntax:

COMPILE sourcefile [objectfile] [options]

2. Or type:

COMPILE

and respond to the following prompts:

Source file [.EXC]:
Object file [source.EXS]:

The source file is the ASCII text file containing your exception
dictionary. The object file is the name of the compiled exception
file that will be created. If you do not supply a name for the
object file, the compiler will use the source file name, and add the
extension .EXS automatically.

Options for the COMPILE command consist of either a forward-slash
(/) or dash (-) character followed by a letter. Options can be
specified only in the single command line syntax, and if given, must
appear after the file name(s).

File Types

The compiler supports three different output (object) formats,
described in this section. The default object file name extensions
are shown in the following table:

Option Switch Default Extension File Type

none .EXS Standard
/A .EXA Auto-load
/C .EXH Chained

where File Type is defined as:

.EXS Standard object file. Contains the compiled
exceptions, terminated by the EOF character (1Ch).

.EXA Auto-load object file. The structure of this file
type is as follows:

0Dh 1Eh [01h "18G" 00h] 01h "L" 00h
.
.

(compiled exceptions)
.
.

1Ch 00h 01h "U" 00h

The header contains all the commands necessary to
begin downloading the exceptions to the synthesizer.

RC SYSTEMS - 35 - DOUBLETALK TOOLS

The trailing bytes immediately following the
exception block halt the downloading process and
enable the exceptions that were just loaded. This
format makes it possible for a program to load
exception files by simply sending the file to the
synthesizer - all the details of invoking the Load
mode and enabling the exceptions are taken care of
automatically. For example, the DOS command

TYPE SPANISH.EXA > LPT3

will download and activate the Spanish exceptions
(note that the DTPRN driver must have been installed
as LPT3 for this example to work).

The optional characters in the brackets ([]) enable
the HiAscEn bit, and are included only if the
compiler detected extended ASCII characters in the
source file. See "Protocol Options Command" for more
information.

.EXH Chained object file. Same as the Standard file type,
but without the EOF character at the end. This
format is used only when the file is to be followed
by another block of exceptions (such as a
user-defined dictionary). It is the responsibility
of the application program to ensure that the EOF
character is sent to the synthesizer after the last
block of exceptions has been loaded.

Input (source) files normally carry the .EXC extension. If you omit
the extension for the source or object file name, the compiler will
add the default extension(s) (.EXC and/or .EXS) for you
automatically.

The following COMPILE commands are equivalent:

compile oddnames.exc,oddnames.EXS

compile oddnames oddnames

compile oddnames
Object file [ODDNAMES.EXS]: <Enter>

compile
Source file [.EXC]: oddnames
Object file [ODDNAMES.EXS]: <Enter>

as are these:

compile acronyms.exc /a
Object file [ACRONYMS.EXA]: test.EXA

compile acronyms,test /a

RC SYSTEMS - 36 - DOUBLETALK TOOLS

Compiling From the Command Line

The compiler also supports an immediate mode of operation, which
compiles a single source exception on the command line. This is
useful in situations where only a few exceptions are needed, and/or
the compiled output is to be hard-coded into an application program.

COMPILE exception

Example:

compile s(a)mple=ae

Compiler output:

S(A)MPLEey;

Downloading Compiled Dictionaries

Downloading dictionaries which have been compiled is easy. If the
dictionary was compiled with the /A switch, your application only
needs to send the object file to the synthesizer as it would normal
text. The LOADER.BAS program is an example of how to download a
standard (.EXS) object file.

PCM MODE ---

In PCM mode, all data sent to DoubleTalk is written directly to
DoubleTalk's digital-to-analog converter (DAC). This results in a
very high data rate, but provides the capability of producing the
highest quality speech, as well as sound effects that are not
possible using the other modes. DoubleTalk also supports ADPCM,
which reduces the effective data rate by a factor of one-half to
one-third that of standard PCM. PCM driver source code, compatible
with both the PC and LT, can be found in the file DT_PCM.ASM.

DoubleTalk PC supports two PCM modes: buffered and non-buffered. In
buffered mode, PCM data is queued in an internal 4096 byte circular
buffer, which is dialed out to the DAC at a programmed sampling
rate. DoubleTalk PC's TTS port status flags are constantly updated
in this mode, and I/O transfer is performed using the usual
handshaking (RDY) method. The maximum sampling rate supported in
buffered mode is 11 kHz. Both DoubleTalk PC and LT support this
mode.

In non-buffered mode, PCM data is sent directly to the DAC in real
time. The TTS port status flags are meaningless in this mode; the
maximum sampling rate is better than 48 kHz. Only DoubleTalk PC
supports non-buffered mode.

Buffered PCM Mode

The command ^An# places DoubleTalk in the Buffered PCM mode. All
subsequent data sent to DoubleTalk is then routed to the DAC buffer.

RC SYSTEMS - 37 - DOUBLETALK TOOLS

Because the PCM data is buffered within DoubleTalk, the output
sampling rate is independent of the data rate into DoubleTalk, as
long as the input data rate is equal to or greater than the sampling
rate.

The sampling rate can be programmed to virtually any rate between 4
and 11 kHz with the PCM Mode command. The relationship between the
command parameter n and the sampling rate fs is

n = 155 - 617/fs
fs = 617/(155 - n)

where fs is measured in kHz. The range of n is 0-99, hence fs can
range from 4 to 11 kHz.

The procedure for sending PCM data to DoubleTalk is straightforward:

1. Program the desired volume level with the Volume (^AnV) command.
A volume setting of 5 will cause the PCM data to be played back
at its original volume level. This step is optional.

2. Issue the Buffered PCM Mode command, ^An#. The value of n will
set the sampling rate within DoubleTalk.

3. Immediately begin transferring the PCM data to DoubleTalk. The
same methods employed for sending ASCII data to the
text-to-speech synthesizer should be used (see "Hardware I/O"
section, above). PCM data must be sent to DoubleTalk as linear,
eight bit signed data (-127 to +127, 0 = midscale). Note that if
the AE status flag is 1, a block of 4096 - 300 = 3796 bytes may
be transferred to DoubleTalk without concern of overflowing the
DAC buffer. This can be beneficial in applications that need to
do background tasks concurrently with PCM-based sounds.

4. After the last byte of PCM data has been sent to DoubleTalk, send
the value 80h (-128d). This signals DoubleTalk to terminate PCM
mode and return to the text-to-speech mode of operation. Note
that up to 4096 bytes of PCM data may still remain in the DAC
buffer, so DoubleTalk may continue producing sound for as long as
1 second (4 kHz sampling rate) after the last byte of data has
been sent. DoubleTalk's SYNC flag will not be cleared until all
of the speech data has been output to the DAC, at which time
DoubleTalk will again accept data for the text-to-speech
synthesizer.

Non-Buffered PCM Mode

The command ^A# places DoubleTalk PC in non-buffered PCM mode. Note
that this is similar to the Buffered PCM Mode command, but the
sampling rate parameter n is omitted. As in buffered mode, PCM data
is expected to be linear, eight bit signed data, and the output
level can be adjusted with the Volume command. It is up to the
application program to write the PCM data to DoubleTalk at the
desired sampling rate (e.g., for a desired sampling rate of 44.1
kHz, each sample should be spaced 22.7 uS apart). PCM mode is

RC SYSTEMS - 38 - DOUBLETALK TOOLS

terminated immediately when a value of 80h (-128d) is written to the
TTS port.

TTS SYNTHESIZER PROGRAMMING TIPS -------------------------------------

This section contains additional information about DoubleTalk's TTS
synthesizer which is not covered in the User's Manual. You will
learn how to ensure DoubleTalk remains as responsive as possible, a
few programming tricks, and how to support user exception
dictionaries.

Response Time Considerations

Considering the computations DoubleTalk has to go through to
translate even the simplest word, it can still be considered to be
quite responsive - an important requirement for visually impaired
users of screen-reader programs. Understanding how DoubleTalk's
text-to-speech algorithms work can help ensure that your programs
will be as responsive with DoubleTalk as possible.

When the TTS synthesizer receives text from an application program,
it queues up the characters in an internal 2.5K buffer (less if an
exception dictionary is loaded). Assuming the synthesizer is not
already talking, the TTS algorithms wait until a carriage return or
null is received (defining what we shall call a "synthesizer phrase
boundary") before translation into speech begins. (This is not true
of Character mode - translation begins immediately upon receipt of
the first character.)

Speaking from a "cold start" is the worst-case scenario for the TTS
synthesizer, because it must translate a relatively large chunk of
text before it can begin speaking. Once it has begun talking,
however, it will continue to accept and store more phrases and
preprocess them "ahead" of the speech, so the next phrase is already
translated once the speech has caught up to it. It is the
initial-phrase latency time that concerns blind users, because they
like the speech to begin as soon as possible upon giving the
command.

Normally-written text generally contains one or more punctuation
marks, such as commas and/or periods. In terms of human speech,
these marks indicate where a natural pause is to be placed.
DoubleTalk takes advantage of this fact by translating text in its
buffer in punctuation-delimited segments, as defined by the
punctuation boundaries (which may or may not occur at synthesizer
phrase boundaries). For this reason, it is important that all
punctuation be sent with the text. The latency time of an initial
phrase with the punctuation left in it will be much less than that
of the same phrase with the punctuation stripped out of it.

Most screen-reader programs do not send the actual punctuation to
the synthesizer, but send the spelling instead ("period," "comma,"
etc.). If your program falls into this category, try adding the
actual punctuation to the end of the word ("period." "comma,"). This
will make the speech more responsive, as well as give the added

RC SYSTEMS - 39 - DOUBLETALK TOOLS

benefit of more natural sounding intonation as the text is read by
the synthesizer (punctuation directly affects the inflection
contours).

If your program waits until the current phrase has been completely
spoken before sending the next phrase, try using the SYNC2 status
flag instead of SYNC (see "Hardware I/O, TTS Port," above). This
will help increase the responsiveness by as much as 50%, depending
on the speed and other factors.

Creating Pauses in Speech

After all this talk about avoiding pauses, why would one want to
create them? One example is for creating the natural pauses a
human reader places between paragraphs of a passage. Another would
be for creating emphasis at a particular point in a sentence, to
help enhance its meaning.

There are at least two ways to add pauses in your text. The easiest
way, for short passages, is to simply string together commas and/or
periods where each pause is to take place. Commas create a medium
pause; periods create a long pause. Commas and periods may be
combined to create even longer pauses. If you don't want the
downward inflection associated with a period to occur, insert at
least one space between it and the word preceding it:

Now let me think... (inflects downward)
Now let me think ... (no inflection)

The second method of creating pauses in the speech makes use of the
synthesizer's exception dictionary. Say, for example, that you
wanted a long pause to be generated between indented paragraphs of
text in a text reader program. It is not practical to insert
additional punctuation marks in the text the program will be
reading, since the text content is generally not known beforehand.
But let's say we loaded the following exception into the dictionary:

()=.. (3 spaces)

This exception causes the speech to pause (actually two long pauses
comprised of the two "." phonemes) whenever three or more
consecutive spaces appear in the text, namely the indent of each
paragraph. Note also that this method will not affect the inflection
in any way, as did the first method. An additional benefit is that
this method will work for virtually any text input.

Forcing Character Pronunciation

It is not necessary to change from Text mode to Character mode to
have text spelled out instead of spoken as words. By following each
letter with a phrase delimiter (carriage return or null character),
the text will be spelled letter by letter.

A potential problem with this method, however, is with the letter
"A" - unless it is followed by another vowel, it will be pronounced

RC SYSTEMS - 40 - DOUBLETALK TOOLS

as "ah" instead of "ay." (This is due to the internal Text mode
pronunciation rules.) To avoid this problem, use the spelling "AY."
Of course, Character mode will avoid this problem altogether, and is
more responsive than Text mode.

Supporting User Dictionaries

If you want to support user-defined exception dictionaries in your
program, consider using the following strategy:

During your program's initialization phase, look in the current disk
directory for a specific, documented dictionary file name, such as
USER.EXH. If it exists, load it into the synthesizer, but only
after DoubleTalk has been initialized. (All RC Systems drivers
initialize DoubleTalk when they start up, including wiping out any
exception dictionary; this includes DTPRN, INT4DAPI, DTC's Dt_Init
and DTQB's DTINIT functions.) This enables your customers to use
their dictionaries conveniently in the context of your program.

If you are going to use your own dictionary as well, load it first,
before loading the user dictionary. Be sure to use the "chained"
file type, so the user dictionary will load properly. Refer to the
section "Exception Compiler" above for more information about the
dictionary file formats.

To summarize, these are the steps your program should follow:

1. Load and initialize any drivers your program may use for
interfacing with DoubleTalk.

2. Load and output the application program's exception dictionary,
if used. It should be of the .EXH (chained) file format.

3. Load and output the user dictionary, if it exists. It should also
be of the .EXH file format.

4. Output the EOF character (1Ch) to the synthesizer to signal the
last of the exceptions have been loaded.

Of course, if only one dictionary is to be used (either the
application's or user-defined, but not both), the .EXA or .EXS file
formats may be used to simplify the loading process.

RC SYSTEMS - 41 - DOUBLETALK TOOLS

APPENDIX A
LPC Speech Encoding Services

The following companies are known to offer LPC speech development
services. Their appearance here is not an endorsement by RC Systems.

Creative Education Institute
David Rousch
P.O. Box 7306
Waco, TX 76714
(817) 751-1188

Laureate Learning Systems
Burnie Fox
110 E. Spring St.
Winooski, VT 05404
(802) 655-4755

Texas Instruments
Regional Technology Center
17891 Cartwright Dr.
Irvine, CA 92714
(714) 660-8292

RC SYSTEMS - 42 - DOUBLETALK TOOLS

APPENDIX B
Additional Information

Application Note #1 - "Interfacing to Other Devices"

Describes methods of interfacing DoubleTalk PC to devices such as
radio transmitters and the telephone network. Available from RC
Systems Technical Support Services.

RC SYSTEMS - 43 - DOUBLETALK TOOLS

